Електричний струм у газах. Несамостійний і самостійний розряди. Поняття про плазму

За звичайних умов гази майже повністю складаються із нейтральних атомів чи молекул, тому є діелектриками. Для того, щоб газ почав проводити електричний струм, його потрібно забезпечити вільними електричними зарядами. Для цього можна:

1) нагріти газ (З підвищенням температури теплові рухи молекул газу призведуть до втрати електронів молекулами, а отже, й утворення позитивно заряджених іонів. Деякі нейтральні молекули приймуть вільні електрони і стануть негативно зарядженими іонами, крім того, самі вільні електрони зможуть створити струм. Чим вища температура, тим більше вільних електронів.);

2) помістити в газ джерело радіоактивного випромінювання;

3) помістити в газ нагріту металеву нитку, з якої будуть випаровуватись вільні електрони, які і створять струм.

Отже, щоб газ проводив електричний струм, в нього треба помістити іонізатор. Завдяки іонізації в газі утворюються вільні носії електричного заряду — іони та електрони.

Процес проходження електричного струму через газ називають газовим розрядом.

Після припинення дії іонізатора газ перестає бути провідником. Струм припиняється після того, як усі іони й електрони досягнуть електродів. Крім того, під час зближення електрон і позитивно заряджений іон можуть знову втратити нейтральний атом. Такий процес називають рекомбінацією заряджених частинок.

Помістимо в газ два металеві електроди, до яких прикладено напругу U. Тиск газу в трубці бажано знизити. Помістимо в трубці іонізатор, який буде утворювати певне число вільних зарядів за одиницю часу (рис. 4.3.5). Постійно підвищуючи напругу, будемо вимірювати силу струму в колі. Результати нанесемо на графік (рис. 4.3.6).

Значення сили струму в газі буде зростати зі збільшенням прикладеної напруги, згідно із законом Ома для ділянки кола, а коли досягне деякого значення, стане незмінним, що вкаже на стан насиченості в трубці. Це означає, що всі носії, які утворює іонізатор, беруть участь у створенні струму. Якщо дію іонізатора припинити, то припиниться і розряд, оскільки інших джерел іонів немає. Тому такий розряд називають несамостійним.

Будемо і далі продовжувати підвищувати напругу на електродах. За деякої граничної напруги в трубці знову почне зростати сила струму (рис. 4.3.7).

Це означає, що в газі з’являються додаткові іони до тих, що утворилися внаслідок дії іонізатора. Сила струму при цьому може зрости в сотні разів, а число іонів, які виникнуть у процесі розряду, може стати таким великим, що зовнішній іонізатор буде вже непотрібним для підтримання розряду. Якщо забрати зовнішній іонізатор, то розряд не припиниться. Розряд, який може існувати без зовнішнього іонізатора, називають самостійним розрядом.

Причиною різкого збільшення сили струму у разі великих напруг (рис. 4.3.7) є зростання кінетичної енергії електронів, що утворилися внаслідок дії зовнішнього іонізатора. На своєму шляху електрон зіштовхується з іонами і нейтральними атомами. Кінетична енергія електрона перед черговим зіткненням пропорційна напруженості поля і довжині вільного пробігу електрона (шляху між двома послідовними зіткненнями):

.

Якщо кінетична енергія електрона більша за роботу іонізації Ai, яку треба виконати, щоб іонізувати нейтральний атом, тобто

,

то під час зіткнення електрона з атомом відбувається іонізація. Кількість заряджених частинок швидко наростає, виникає електронна лавина. Цей процес називають іонізацією електронним ударом. Однак цього замало. Для підтримання такого розряду потрібна емісія електронів з катода. Цьому сприяють швидкі позитивні іони, що утворюються після зіткнення електронів з нейтральними атомами і внаслідок дії електричного поля вдаряються об катод.

Залежно від властивостей і стану газу, а також від якостей і розміщення електродів, прикладеної до них напруги виникають різні види самостійного розряду в газах. Якщо тиск низький, виникає тліючий розряд. За атмосферного тиску можна отримати електричну дугу, коронний та іскровий розряди.

Тліючий розряд використовують у газоосвітлювальних лампах. Електрична дуга є потужним джерелом світла і широко використовується в прожекторах, установках для зварювання і різання металів тощо. Прикладом велетенського іскрового розряду є блискавка. Іскровий розряд використовують для запалення суміші палива і повітря у двигунах внутрішнього згоряння, для точної обробки металів тощо.

Коронний розряд, що виникає за атмосферного тиску поблизу загострених ділянок провідника, у разі великого заряду має вигляд корони, що світиться навколо вістря. Його використовують в електричних фільтрах для очищення промислових газів від домішок.

Якщо температури досить високі, розпочинається іонізація газу через зіткнення атомів чи молекул, які швидко рухаються. Речовина переходить в новий стан — плазму.

Плазма — це частково чи повністю іонізований газ, в якому густини позитивних і негативних зарядів майже збігаються. Плазма вважається четвертим станом речовини. У повністю іонізованій плазмі електрично нейтральних атомів немає, тому плазма дуже добре проводить струм. У цілому плазма являє собою електрично нейтральну систему.

Поряд з нагріванням іонізація газу і утворення плазми можуть бути викликані різними способами, наприклад, бомбардуванням атомів газу швидкими зарядженими частинками. При цьому утворюється низькотемпературна плазма.

Через велику рухливість заряджених частинок у плазмі, вони легко переміщуються під дією електричного і магнітного полів, тому будь-які локальні порушення електронейтральності плазми швидко ліквідуються.

На відміну від нейтрального газу, між молекулами якого є короткодіючі сили, між зарядженими частинками плазми діють кулонівські сили, які порівняно повільно зменшуються з відстанню. Кожна частинка взаємодіє одночасно з багатьма навколишніми частинками. Завдяки цьому частинки можуть брати участь не тільки в хаотичному тепловому русі, а і в упорядкованих (колективних) рухах. У плазмі легко збуджуються різні коливання й хвилі.

Провідність плазми підвищується зі зростанням ступеня іонізації. За високої температури повністю іонізована плазма за своєю провідністю наближається до надпровідників.

У стані плазми перебуває близько 90 % речовини Всесвіту (Сонце, зорі, міжзоряний простір).

Плазма оточує нашу планету. Верхній шар атмосфери на висоті 100 — 300 км є іонізованим газом — іоносферою. Полум’я запаленого сірника це також плазма.

Плазма виникає при всіх видах розряду в газах: тліючому, дуговому, іскровому тощо. Таку плазмуують у лазерах. називають газорозрядною. Її використов

Струмінь плазми застосовують у магнітогідродинамічних генераторах, плазмотронах. Потужні струмені плазми застосовують для різання і зварювання металів, буріння свердловин, прискорення перебігу хімічних реакцій тощо.

Найбільші перспективи фізики вбачають у застосуванні високотемпературної плазми (T > 108 К) для створення керованих термоядерних реакцій.

Запитання для самоперевірки

1. У результаті якого процесу газ стає електропровідним?

2. Що називають іонізацією газу?

3. Що називають рекомбінацією атомів?

4. Що називають електричним струмом у газах?

5. Які заряди є носіями струму в газах?

6. Що являє собою газовий розряд? Побудуйте схему експерименту з вивчення закономірностей струму в газах і поясніть особливості несамостійного розряду в газах.

7. Поясніть особливості самостійного газового розряду, побудувавши повну вольт-ампернуу газового розряду. характеристик

8. Який процес називають іонізацією електронним ударом?

9. Назвіть і опишіть види самостійних розрядів у газах?

10. Що таке плазма? Які її особливості? Які види плазми існують?

Електричний струм у розчинах і розплавах електролітів. Закони електролізу. Застосування електролізу

Рідини, як і тверді тіла, можуть бути діелектриками, провідниками і напівпровідниками. Діелектриком є також дистильована вода. До провідників належать розплави і розчини електролітів: кислот, лугів і солей. Рідкими напівпровідниками є розплавлений селен, розплави сульфідів та ін.

Під час розчинення електролітів під впливом електричного поля полярних молекул води відбувається розпад молекул електролітів на іони. Цей процес називають електролітичною дисоціацією, в результаті якої нейтральні молекули розпадаються на позитивні та негативні іони. В електроліті з’являються вільні носії зарядів і він починає проводити струм. Оскільки заряд у водних розчинах чи розплавах електролітів переноситься іонами, то таку провідність називають іонною. За іонної провідності проходження струму пов’язано із перенесенням речовини. На електродах відбувається виділення речовин, які входять до складу електроліту. На аноді негативно заряджені частинки віддають свої зайві електрони (окиснювальна реакція), а на катоді позитивні іони отримують електрони (реакція відновлення). Процес виділення на електроді речовини, пов’язаний із окиснювально-відновлювальними реакціями, називають електролізом.

Розглянемо явище електролізу на прикладі мідного купоросу. В результаті електролітичної дисоціації CuSO4 = Cu2 + + SO4 2 +. Позитивно заряджені іони міді під дією електричного струму будуть переміщуватися до катода, де отримають електрони і виділяться на ньому у вигляді нейтральних атомів міді (рис. 4.3.4). Негативно заряджені іони під дією електричного поля перемістяться до анода, де віддадуть вільні електрони і також виділяться на ньому.

Нехай за час t через електроліт буде перенесено заряд . Кількість іонів, які досягли електрода, дорівнюватиме:

,

де q0Ze — заряд іона; Z — валентність іона; e — елементарний заряд.

Кількість іонів N дорівнює кількості атомів речовини, що виділиться на електроді, а маса виділеної речовини

,                                   (4.3.3)

де m0 — маса одного атома, ; m — молярна маса речовини.

Для кожного хімічного елемента можна у виразі (4.3.3) виділити сталу величину k, яку називають електрохімічним еквівалентом речовини:

.                                                (4.3.4)

У СІ електрохімічний еквівалент вимірюють у кілограмах на кулон:

[k] = кг/Кл.

Виходячи з цього можна записати, що

mkqkIDt.                                                     (4.3.5)

Маса речовини, яка виділяється на катоді за час Dt, пропорційна силі струму і часу. Це твердження, встановлене експериментально Фарадеєм (1831 р.), має назву першого закону Фарадея для електролізу.

Електрохімічний еквівалент речовини визначено для всіх хімічних елементів. Він є табличною величиною, але його не важко розрахувати: , де — хімічний еквівалент речовини. Добуток числа Авогадро на заряд електрона називають сталою Фарадея:

FNAe = 6,02·1023 1/моль ?1,6·10 -19 Кл = 96500 Кл/моль.

Стала Фарадея дорівнює заряду, під час перенесення якого одновалентними іонами через розчин або розплав електроліту виділяється 1 моль речовини.

З цих міркувань вираз (4.3.4) набуде вигляду:

.                                                              (4.3.6)

Формула (4.3.6) виражає другий закон Фарадея для електролізу: електрохімічні еквіваленти різних речовин прямо пропорційні їх хімічним еквівалентам. Якщо у вираз (4.3.5) підставити співвідношення (4.3.4), то отримаємо об’єднаний закон Фарадея для електролізу:

.

Явище електролізу має широке застосування в електрометалургії (добування чистих металів); у гальваностегії (нанесення металевих покриттів для запобігання корозії металів); у гальванопластиці (виготовлення копій з матриць) тощо. Будову хімічних джерел струму (гальванічних елементів та акумуляторів) також засновано на процесах взаємодії металів з електролітами.

Запитання для самоперевірки

1. Які речовини належать до електролітів?

2. Що таке електролітична дисоціація?

3. Що називають електричним струмом у рідинах?

4. Чим зумовлено електропровідність електролітів?

5. Чому під час проходження струму через розчин електроліту відбувається перенесення речовини, а під час проходження по металевому провіднику не відбувається?

6. Що називають електролізом?

7. Запишіть і сформулюйте перший закон Фарадея для електролізу.

8. Що називають електрохімічним еквівалентом речовини? Який його фізичний зміст?

9. Запишіть і сформулюйте другий закон Фарадея для електролізу.

10. Що називають сталою Фарадея для електролізу? Який фізичний зміст цієї сталої? Запишіть її значення.

11. Наведіть приклади застосування електролізу.

Електричний струм у металах. Електронна провідність металів. Залежність опору металів від температури. Надпровідність

У металах носіями електричного струму є вільні електрони. Їх концентрація приблизно дорівнює концентрації атомів (n 10 28 м — 3), оскільки кожний атом одновалентного металу вже при кімнатній температурі віддає один електрон провідності. Ці електрони між собою не взаємодіють, а отже, ведуть себе подібно до атомів одноатомного ідеального газу.

Якщо немає зовнішнього електричного поля, електрони провідності здійснюють хаотичний тепловий рух із середньою квадратичною швидкістю, що залежить від температури металу. Якщо до металу прикладено зовнішнє електричне поле, електрони провідності починають рухатися впорядковано (здійснюють дрейф) із середньою швидкістю <>, тобто в металевому провіднику виникає електричний струм. Згідно із формулою (4.2.1)

Таблиця 4.3.1

Узагальнений розгляд розділу «Електричний струм у різних середовищах»

Назва середовища Тип провідності Характерна дія струму Експериментальне обґрунтування Основні закономірності Застосування
Метал(рідкий метал) Електронна Теплова,магнітна,світлова, Досліди Мандельштама і Папалексі, Толмена і Стьюрта
З’єднувальні провідники ввальні елементи, лампи розжарювання, електромагніти, трансформатори тощо електричних колах, резистори, нагрі
Розчини і розплави електролітів Іонна електронна Хімічна, теплова Досліди з електролізу Закони електролізу Фарадея: 1-й: mKIDt.
2-й:
Об’єднаний:
Антикорозійні покриття, одержання відбитків у поліграфічній промисловості, одержання чистих металів (алюмінію, міді), хімічні джерела струму
Гази, плазма Іонно-електронна Газовий розряд Несамостійний розряд у скляній трубці з двома електродами під дією іонізатора. Типи самостійного розряду: тліючий, іскровий, коронний, дуговий. Одержання плазми (полум’я, свічки, Сонце, зорі тощо)

Забезпечення самостійного розряду. Оформлення реклам, лампи денного світла, газові лазери, очищення газів від домішок, лічильники заряджених частинок, зварювання металів, дугові електропечі. Магнітогідродинамічні генератори, плазмотрон, керований термоядерний синтез
Вакуум Термоелектрона Випрямлення струмуі підсилення струму в колі Дія елекронних діодів, тріодів, елекронно-променевих трубок Випрямлення і підсилення сигналів ввикористання електронно-променевих трубок ввізорах, комп’ютерах, осцилографах тощо теле радіотехнічних пристроях,
Напівпровідники (бездомішкові) Електронно-діркова (власна) Випрямлення і підсилення струму Дія термісторів, фото- резисторів, діодів і транзисторів Випрямлення і підсилення сигналів ввв автоматичних пристроях, вимірювання температури за допомогою терморезисторів радіотехнічних пристроях, електричних колах,
Донорні Електронний
Акцепторні Діркова

,

де e — модуль заряду електрона. Нехай, наприклад, сила струму I = 1 A, а площа поперечного перерізу провідника S = 10-6 м2. Модуль заряду електрона e = 1,6·10-19 Кл. Кількість електронів в 1 м3 міді дорівнює кількості атомів у цьому об’ємі, бо один з валентних електронів кожного атома міді колективізований і вільний. Знайдемо цю кількість n:

,                                                   (4.3.1)

де r = 9000 кг/м3 — густина міді; NA = 6,02·1023 моль-1 — число Авогадро; m = 0,0635 кг/моль — молярна маса міді.

Згідно з формулою (4.3.1) концентрація електронів у мідному провіднику n 8,5·10 28 м-3. Отже,

.

Швидкість упорядкованого руху електронів під дією поля набагато менша від середньоквадратичної швидкості їх хаотичного теплового руху ().

Провідність металів зумовлена рухом вільних електронів. Це експериментально довели вітчизняні вчені Мандельштам і Папалексі (1913 р.), а також Стюарт і Толмен (1916 р.).

Схема цих дослідів така. На котушку намотують дріт, кінці якого припаюють до двох металевих дисків, ізольованих один від одного (рис. 4.3.1). До країв дисків за допомогою ковзних контактів приєднують гальванометр.

Котушку спочатку швидко обертають, а потім різко зупиняють. Під час різкого гальмування котушки вільні заряджені частинки деякий час рухаються відносно провідника за інерцією, і, отже, в котушці виникає електричний струм. Струм проходить короткий час, бо внаслідок опору провідника заряджені частинки гальмуються й упорядкований рух частинок, що утворюють струм, припиняється.

Визначаючи за допомогою гальванометра заряд, що проходить через нього за весь час існування струму в колі, вчені визначили питомий заряд q0/m носіїв струму в металі. Він дорівнює 1,8·1011 Кл/кг. Це відношення збігається зі значенням e/m для електронів, знайденим за відхиленням пучка електронів у магнітному полі.

Таким чином, було доведено, що електричний струм у металах є впорядкованим рухом вільних електронів. Густину струму в металевому провіднику згідно з формулою (4.2.2) розраховують за формулою:

jen,

де e — заряд електрона; n — концентрація електронів у провіднику; — середня швидкість упорядкованого руху електронів під дією електричного поля.

Опір металевих провідників з підвищенням температури збільшується. Це зумовлено тим, що під час нагрівання металевого провідника збільшується середня квадратична швидкість теплового руху електроніввідності і енергія коливань іонів кристалічних ґраток, тому збільшується частота зіткнень електронів з іонами. про

Якщо при температурі 0?C опір провідника дорівнює R0, а при температурі t він дорівнює R, то відносна зміна опору, як показує дослід, прямо пропорційна зміні температури t:

.                                                                               (4.3.2)

Коефіцієнт пропорційності a називають температурним коефіцієнтом опору. Він характеризує залежність опору речовини від температури. Температурний коефіцієнт опору чисельно дорівнює відносній зміні опору провідника під час нагрівання на 1 К.

Від нагрівання геометричні розміри провідника мало змінюються. Його опір змінюється переважно внаслідок зміни питомого опору. Знайдемо залежність питомого опору від температури. Для цього у формулу (4.3.2) підставимо значення і . Остаточно знаходимо:

r = r0(1 + at).

Оскільки a майже не залежить від температури, то питомий опір лінійно залежить від температури (рис. 4.3.2).

Сплави з високим питомим опором (наприклад, для сплаву міді з нікелем — константану r  10 -6 Ом·м) використовують для виготовлення еталонних опорів, тобто у тих випадках, коли потрібно, щоб опір помітно не змінювався у разі зміни температури.

Залежність опору металів від температури використовують у термометрах опору.

Деякі метали і сплави під час охолодження до критичної температури повністю втрачають здатність чинити опір напрямленому рухові електронів провідності. Це явище називають надпровідністю. Уперше його спостерігав 1911 року голландський фізик Камерлінг-Оннес. Він виявив, що під час охолодження ртуті у рідкому гелії її опір спочатку змінюється поступово, а при температурі 4,1 К різко спадає до нуля (рис. 4.3.3).

Усередині речовини, що знаходиться в надпровідному стані, магнітного поля немає, і вектор індукції магнітного поля в надпровіднику дорівнює нулю. Магнітне поле, якщо його індукція більша від певного значення, може вивести провідник із надпровідного стану.

Сила струму в замкненому надпровіднику залишається незмінною тривалий час. Це використовують для отримання сильних магнітних полів за допомогою електромагнітів з надпровідною обмоткою. Надпровідники застосовують для виготовлення надпотужних трансформаторів.

У 1986 — 1987 рр. було відкрито високотемпературну надпровідність керамічних провідниках. Температура такого переходу відповідає температурі 120 К, що є нижчою від температури кипіння рідкого азоту. Якщо будуть розроблені надпровідники такого типу з достатньою міцністю, то можна буде передавати електроенергію на будь-які відстані без втрат.

Запитання для самоперевірки

1. Назвіть речовини, що є провідниками електричного струму.

2. Які потрібні умови для існування електричного струму в провідниках.

3. Що називають електричним струмом у металах?

4. Чим зумовлено електропровідність металів?

5. Який експеримент підтвердив існування в металах вільних електронів? Нарисуйте схему експерименту і поясніть його суть.

6. Визначте напрям електричного струму в котушці в момент гальмування.

7. Що називають питомим зарядом носія струму? Чому дорівнює питомий заряд електрона?

8. За якою формулою визначають силу струму в провіднику?

9. Яка залежність струму в провіднику від напруги? Побудуйте графік цієї залежності.

10. Який характер залежності опору металів від температури? Побудуйте графік цієї залежності. Поясніть цю залежність з погляду електронної теорії.

11. Наведіть формулу залежності питомого опору провідника від температури.

12. Що називають температурним коефіцієнтом опору? Який його фізичний зміст?

13. Побудуйте графік залежності питомого опору від температури.

14. У чому полягає явище надпровідності?

15. Які головні технічні труднощі використання надпровідників на практиці?

Електричний струм

Електричний струм

Якщо взяти які-небудь два тела, заряджені позитивною й негативною електрикою до однакового ступеня, і з’єднати їхній один з одним яким-небудь металевим предметом, наприклад, шматком мідного дроту, то через дуже короткий проміжок часу електричні заряди в цих телах зникнуть тела виявляться нейтральними.

Відбудеться це тому, що надлишок електронів з негативно зарядженого тела перейде по дроті на тело, де електронів не вистачає (позитивно заряджене). Рух електронів по проведенню ми називаємо електричним струмом. У нашім прикладі ми мали справу з дуже короткочасним електричним струмом у нас пересування електронів по дроті відбувалося протягом дуже невеликого проміжку часу.
Електричний струм
Для одержання тривалих струмів потрібно мати який-небудь «джерело струму», наприклад гальванічний елемент; при з’єднанні пластин (полюсів) елемента шматком дроту ми також будемо спостерігати перенос електронів із цинкової на мідну пластину, тобто електричний струм.

Але цей струм, у випадку гальванічного елемента, різко відрізняється від описаного вище випадку. Якщо включити цей амперметр у проведення, по якому проходить електричний струм, то стрілка амперметра відхилиться убік. У нашім першому досвіді відхилення стрілки відбудеться тельки на одне мгновенье, після чого стрілка стане у своє первісне положення; у досвіді ж з гальванічним елементом стрільця відхилиться й буде перебувати в цьому положенні увесь час, поки обидві пластини елемента з’єднані один з одним дротом.

Це показує, що в дроті увесь час відбувається пересування електродів, увесь час протікає електричний струм. Такий електричний струм, коли електрони увесь час рухаються в одному напрямку називається постійним струмом. У той час, коли було відкрите явище проходження електричного струму, учені не підозрювали про існування електрона й щира природа електричного струму їм не була відома.

Умовно в той час було прийнято, що електрика тече по проведенню від позитивної пластини елемента до пластини негативної, тобто саме в напрямку, зворотному фактичному руху електронів. Такий умовний напрямок електричного струму збереглося дотепер по тій простій причині, що якби тепер захотіли змінити визначення напрямку струму, то знадобився новий напрямок усюди особливо обмовити, якими доводиться часто користуватися, застосовували визначення напрямку струму, зворотне дійсному.

Все це викликало б надзвичайну плутанину. Тому й у цей час прийнято вважати, що електричний струм тече від плюса до мінуса; варто лише пам’ятати, що дійсний рух електронів відбувається у зворотному напрямку. Провідники й ізолятори. В описаному вище досвіді ми з’єднували пластини, або, як їх інакше називають, полюсы гальванічного елемента, металевим дротом.

Якби ми ці полюсы з’єднали між собою шматком сухої мотузки або скляною паличкою, то ми помітили б, що по мотузці або скляній паличці електричний струм текти не буде; це пояснюється тим, що названі матеріали електричного струму не проводять. Всі речовини, що зустрічаються в природі, розділяються, у змісті проходження електричного струму, на дві групи: на провідники, матеріали здатні проводити електричний струм, і ізолятори, матеріали не провідної електрики. Ізолятори інакше називаються діелектриками.

До провідників ставляться всі метали, розчини солей і кислот у воді й вугілля; до ізоляторів ставляться скло, порцеляна, слюда, дерево, шовк, папір і т.д. Здатність речовини проводити або не проводити електрика залежить від його внутрішньої будови. У всіх твердих провідниках існують так звані вільні електрони, т.-е. такі електрони, які слабко пов’язані з атомами й можуть вільно пересуватися між атомами, переходячи з одного атома на іншій.

От ці-те «вільні» електрони й беруть участь в утворенні електричного струму ). При приєднанні
проведення до гальванічного елемента вільні електрони починають пересуватися від негативного до позитивного полюса й на їхнє місце надходять нові електрони з негативного полюса. В ізоляторах ми подібних вільних електронів не маємо; тут всі електрони міцно зв’язані кожний зі своїм атомом і пересуваються тельки обертаючись навколо атома.

У такий спосіб при з’єднанні ізолятора до полюсів елемента ми ніякого пересування електронів через ізолятор не маємо й електричний струм відсутній. Кількість електрики й сила струму. Дотепер ми розглядали явища тельки з якісної сторони, не стосуючись сторони кількісної. Зупинимося на розгляді основних величин, з якими доводиться мати справа в електротехніку.

Перша величина, з якої ми познайомимося, ця кількість електрики або, інакше, величина електричного заряду. Але визначення кількості електрики числом електронів представляє більші практичні незручності, тому що кількість електрики, що втримується в одному електроні дуже невелико. Ще до того, як були відкриті електрони, кількість електрики визначалася спеціальною мірою, що носить назву кулона. Ця величина збереглася й у цей час.